On June 23, 1988, James Hansen of the NASA Goddard Space Institute gave testimony to the U.S. Senate Committee on Energy and Natural Resources.

Opening Statement to the Committee, by Dr. James Hansen, Director, NASA Goddard Institute for Space Studies

Mr. Chairman and committee members, thank you for the opportunity to present the results of my research on the greenhouse effect which has been carried out with my colleagues at the NASA Goddard Institute for Space Studies.

I would like to draw three main conclusions. Number one, the earth is warmer in 1988 than at any time in the history of instrumental measurements. Number two, the global warming is now large enough that we can ascribe with a high degree of confidence a cause and effect relationship to the greenhouse effect. And number three, our computer climate simulations indicate that the greenhouse effect is already large enough to begin to effect the probability of extreme events such as summer heat waves.

My first viewgraph shows the global temperature over the period of instrumental records which is about 100 years. The present temperature is the highest in the period of record. The rate of warming in the past 25 years, as you can see on the right, is the highest on record. The four warmest years, as the Senator mentioned, have all been in the 1980s. And 1988 so far is so much warmer than 1987, that barring a remarkable and improbable cooling, 1988 will the warmest year on the record.

Now let me turn to my second point which is causal association of the greenhouse effect and the global warming. Causal association requires first that the warming be larger than natural climate variability and, second that the magnitude and nature of the warming be consistent with the greenhouse mechanism. These points are both addressed in my second viewgraph. The observed warming during the past 30 years, which is the period when we have accurate measurements of atmospheric composition, is shown by the heavy black line in this graph. The warming is almost 0.4 degrees Centigrade by 1987 relative to climatology, which is defined as the 30-year mean, 1950 to 1980 and, in fact, the warming is more than 0.4 degrees Centigrade in 1988. The probability of a chance warming of that magnitude is about 1 percent. So with 99 percent confidence we can state that the warming during this time period is a real warming trend.

The other curves in this figure are the results of global climate model calculations for three scenarios of atmospheric trace gas growth. We have considered several scenarios because there are uncertainties in the exact trace gas growth in the past and especially in the future. We have considered cases ranging from business as usual, which is scenario A, to draconian emission cuts, scenario C, which would totally eliminate net trace gas growth by the year 2000.

The main point to be made here is that the expected global warming is of the same magnitude as the observed warming. Since there is only a 1 percent chance of an accidental warming of this magnitude, the agreement with the expected greenhouse effect is of considerable significance. Moreover, if you look at the next level of detail in the global temperature change, there are clear signs of the greenhouse gas effect. Observational data suggests a cooling in the stratosphere while the ground is warming. The data suggest somewhat more warming over land and sea ice regions than over open ocean, more warming at high latitudes than at low latitudes, and more warming in the winter than in the summer. In all of these cases, the signal is at best just beginning to emerge, and we need more data. Some of these details, such as the northern hemisphere high latitude temperature trends, do not look exactly like the greenhouse effect, but that is expected. There are certainly other climate factors involved in addition to the greenhouse effect.

Altogether the evidence that the earth is warming by an amount which is too large to be a chance fluctuation and the similarity of the warming to that expected from the greenhouse effect represents a very strong case. In my opinion, that the greenhouse effect has been detected, and it is changing our climate now.

Then my third point. Finally, I would like to address the question of whether the greenhouse effect is already large enough to affect the probability of extreme events, such as summer heat waves. As shown in my next viewgraph, we have used the temperature changes computed in our global climate model to estimate the impact of the greenhouse effect on the frequency of hot summers in Washington, D.C. and Omaha, Nebraska. A hot summer is defined as the hottest one-third of the summers in the 1950 to 1980 period, which is the period the Weather Bureau uses for defining climatology. So, in that period the probability of having a hot summer was 33 percent, but by the 1990s, you can see that the greenhouse effect has increased the probability of a hot summer to somewhere between 55 percent and 70 percent in Washington according to our climate model simulations. In the late 1980s, the probability of a hot summer would be somewhat less than that. You can interpolate to a value of something like 40 to 60 percent.

I believe that this change in the frequency of hot summers is large enough to be noticeable to the average person. So, we have already reached a point that the greenhouse effect is important. It may also have important implications other than for creature comforts.

My last viewgraph shows global maps of temperature anomalies for a particular month, July, for several different years between 1986 and 2029, as computed with our global climate model for the intermediate trace gas scenario B. As shown by the graphs on the left where yellow and red colors represent areas that are warmer than climatology and blue areas represent areas that are colder than climatology, at the present time in the 1980s the greenhouse warming is smaller than the natural variability of the local temperature. So, in any given month, there is almost as much area that is cooler than normal as there is warmer than normal. A few decades in the future, as shown on the right, it is warm almost everywhere.

Continued at source…

Video Link (different source…)